This page is under construction. Content coming soon.
Key Topics
- Domain Randomization: Training with varied simulation parameters
- Domain Adaptation: Aligning feature distributions across domains
- System Identification: Calibrating simulation to match reality
- Reality Gap: Understanding and mitigating simulation-reality differences
References
- Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., et al. (2017). Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping.
- Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., et al. (2017). Deep Q-learning from Demonstrations.
- Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A., Krause, A., et al. (2017). Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization.
- Pan, X., You, Y., Wang, Z., Lu, C. (2017). Virtual to Real Reinforcement Learning for Autonomous Driving.
- Weber, T., Racanière, S., Reichert, D., Buesing, L., Guez, A., et al. (2017). Imagination-Augmented Agents for Deep Reinforcement Learning.

